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The critical current of the spin-transfer-torque-driven magnetization dynamics was studied by taking into
account both spin pumping and the finite penetration depth of the transverse spin current. We successfully
reproduced the recent experimental results obtained by Chen et al. �Phys. Rev. B 74, 144408 �2006�� and
found that the critical current remains finite even in the zero-thickness limit of the free layer. We showed that
the remaining value of the critical current is determined mainly by spin pumping. We also showed that we
could control the critical current by varying the spin-diffusion length of the nonmagnetic electrode adjacent to
the free layer.
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Spin transfer torque �STT� is the torque due to the transfer
of transverse spin angular momentum from the conducting
electrons to the magnetization of a ferromagnet.1,2 The STT
in magnetic multilayers such as the current perpendicular-to-
the-plane giant magnetoresistive �CPP-GMR� �Refs. 3–5�
and tunnel magnetoresistive �TMR� �Refs. 6–8� spin valves
has been investigated intensively because STT-driven mag-
netization dynamics is a promising technique in operating
the spin-electronic devices such as magnetic random access
memories and microwave oscillators. One of the main ob-
stacles in developing STT-based spin-electronic devices is
the high critical current density. The critical current density
required to induce the STT-driven magnetization dynamics in
CPP-GMR spin valves is as high as 106–108 A /cm2.9–12

On the other hand, the CPP-GMR spin valve is one of the
promising candidates for the read head for ultrahigh-density
magnetic recording.13,14 It is known that STT-driven magne-
tization dynamics produces noise, and that low critical cur-
rent density is required for the read head application.15

Therefore, it is natural to ask how to control the critical
current density of STT-driven magnetization dynamics in
CPP-GMR spin valves.

STT was first proposed by Slonczewski1 and indepen-
dently by Berger2 in 1996. In Slonczewski’s theory the criti-
cal current of STT-driven magnetization dynamics is ex-
pressed as16,17

Ic =
2eMSd

���
�0� , �1�

where e is the elementary charge and � is the Dirac constant.
M, S, d, �, and �0 are the magnetization, cross-section area,
thickness, gyromagnetic ratio, and intrinsic Gilbert damping
constant of the free layer, respectively. � is the angular fre-
quency of the magnetization around the equilibrium point.
The transverse spin-polarization coefficient � depends only
on the relative angle of the magnetizations of the fixed and
free layers.1,16 According to Slonczewski’s theory, we can
control the critical current by varying the thickness of the
free layer d and the critical current vanishes in the limit of
d→0.

However, recently, Chen et al.12 reported that the critical
current of STT-driven magnetization dynamics of a CPP-
GMR spin valve remains finite even in the zero-thickness
limit of the free layer. What are missing from the above
consideration based on Slonczewski’s theory are the effects
of the finite penetration depth of the transverse spin current,
�t,

18–20 and spin pumping.20–24 The penetration depth of the
transverse spin current is the characteristic length of the fer-
romagnetic �F� metal over which the transfer of the spin
angular momentum from conducting electrons to the magne-
tization is achieved. If the free layer is thinner than �t, the
conducting electrons cannot transfer their angular momen-
tum to the magnetization to exert STT. Spin pumping is the
phenomenon by which the spin current is pumped out from
the free layer into the other layers. The magnetic �Gilbert�
damping of the free layer is enhanced by spin pumping.
Therefore, we need to analyze the experimental results by
taking into account both the finite penetration depth of the
transverse spin current and spin pumping to understand the
mechanism that determines the critical current of STT-driven
magnetization dynamics in magnetic multilayers.

In this paper, we study the critical current of STT-driven
magnetization dynamics by taking into account both the fi-
nite penetration depth of the transverse spin current and spin
pumping. In order to analyze the experiments by Chen et
al.,12 we extend the spin-pumping theory with the finite pen-
etration depth20 to include the electric current. We show that
the critical current remains finite even in the zero-thickness
limit of the free layer, which agrees quantitatively well with
the results of Ref. 12, and that the remaining value is deter-
mined mainly by spin pumping. We found that we can con-
trol the remaining value of the critical current by varying the
spin-diffusion length of the nonmagnetic �N� electrode adja-
cent to the free layer. The longer the spin-diffusion length of
the nonmagnetic electrode, the smaller the remaining value
of the critical current.

The system we consider is shown in Fig. 1. Two ferro-
magnetic layers �F1 and F2� are sandwiched by the nonmag-
netic layers Ni �i=1–7�. The F1 and F2 layers correspond to
the free and fixed layers, respectively. mk �k=1,2� is the unit
vector pointing to the direction of the magnetization of the
Fk layer. dk and Li are the thicknesses of the Fk and Ni layers,
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respectively. The electric current I flows from the N7 layer to
the N1 layer.

In order to analyze the STT-driven magnetization dynam-
ics in the multilayer system shown in Fig. 1, we extend the
spin-pumping theory with the finite penetration depth20 to
include the electric current. The electric and pumped spin
currents at the Fk /Ni interface �into Ni� are derived by the
circuit theory,25 and expressed in terms of the charge accu-
mulation �Ni,Fk

and the spin accumulation �Ni,Fk
as23,25

IFk/Ni =
eg

2h
�2��Fk

− �Ni
� + pmk · ��Fk

− �Ni
�� , �2�

Is
pump =

�

4	
�gr

↑↓m1 

dm1

dt
+ gi

↑↓dm1

dt
� , �3�

where h=2	� is the Planck constant, g=g↑↑+g↓↓ is the
sum of the spin-up and spin-down conductances, p= �g↑↑

−g↓↓� / �g↑↑+g↓↓� is the spin polarization of the conductances,
and gr�i� is the real �imaginary� part of the mixing conduc-
tance. The spin current at each Fk /Ni and Ni /Nj interfaces
�into Ni� are given by20,25

Is
Fk/Ni =

1

4	
	g
p��Fk

− �Ni
� +

1

2
mk · ��Fk

− �Ni
��mk

− gr
↑↓mk 
 ��Ni


 mk� − gi
↑↓�Ni


 mk

+ tr
↑↓mk 
 ��Fk


 mk� + ti
↑↓�Fk


 mk� , �4�

Is
Ni/Nj = −

gNi/Nj

4	
��Ni

− �Nj
� , �5�

where tr�i�
↑↓ is the real �imaginary� part of the transmission

mixing conductance at the Fk /Ni interface and gNi/Nj
is the

conductance of the one spin channel at the interface. The
spin current of Eq. �4� is obtained from the circuit theory of
Brataas et al.,25 eliminating the assumption that the nonequi-
librium distribution function of the electrons in a ferromag-
netic layer is aligned to the direction of the magnetization in
spin space. It should be noted that the transmission mixing
conductance in Eq. �4� is different from that defined by Zwi-
erzycki et al.26 Zwierzycki et al.26 calculated a transmission
mixing conductance defined through a N /F /N junction de-

fined as t↑↓= t↑t↓�, where t�= tF→N
� eik�

� dtN→F
� and tF�N�→N�F�

� is
the transmission coefficient for electrons from F�N� to N�F�,
and showed that t↑↓ depends on the thickness of the ferro-

magnetic layer d due to the phase factor eik�
� d.26 On the other

hand, the transmission mixing conductance in Eq. �4� is de-

fined by tr�i�
↑↓ =Re�Im��tF→N

↑ tF→N
↓� �, and is independent of the

thickness of the ferromagnetic layer. Although the original
formulation of the circuit theory assumed the spatially uni-
form charge and spin accumulations,25 it has been shown that
the circuit theory is applicable to the diffusive system.24,27 It
should be noted that there is a controversial issue regarding
the transverse spin accumulation in the ferromagnetic layer,
�F

T =m
 ��F
m�.18,19,23–25,28–30

The spin accumulation in the nonmagnetic layer �N obeys
the diffusion equation,31 and is expressed as a linear combi-
nation of exp��x /�sd�N��, where �sd�N� is the spin-diffusion
length of the nonmagnetic layer. The spin current in the non-
magnetic layer is given by

Is
N = −

�

�x

�S�N

2e2 �N, �6�

where �N is the conductivity of the nonmagnetic layer.
The longitudinal spin accumulation in the ferromagnetic

layer, �F
L = �m ·�F�m, also satisfies the diffusion equation

and is expressed as a linear combination of exp��x /�sd�FL��,
where �sd�FL� is the longitudinal spin-diffusion length of the
ferromagnetic layer.31 The longitudinal spin current in the
ferromagnetic layer is

�m · Is
F�m = −

�

�x

�S

2e2 ��F
↑�F

↑ − �F
↓�F

↓�m , �7�

where �F
↑�↓�=

F

d
f↑�↓� and �F
↑�↓� are the electrochemical po-

tential and the conductivity for the spin-up �spin-down� elec-
trons, respectively. The spin polarization of the conductivity
is defined as �= ��F

↑ −�F
↓� / ��F

↑ +�F
↓�.

The transverse spin accumulation in the ferromagnetic
layer obeys18

�2

�x2�F
T =

1

�J
2�F

T 
 m +
1

�sd�FT�
2 �F

T , �8�

where �J=��DF
↑ +DF

↓�� / �2J� and �sd�FT� is the transverse
spin-diffusion length. J is the strength of the exchange
field19 and DF

↑�↓� is the diffusion constant of spin-up �spin-
down� electrons. The spin polarization of the diffusion
constant is defined as ��= �DF

↑ −DF
↓� / �DF

↑ +DF
↓�. The trans-

verse spin accumulation is expressed as a linear combi-
nation of exp��x / l+� and exp��x / l−�, where 1 / l�

=��1 /�sd�FT�
2 �� �i /�J

2�. The penetration depth of the trans-
verse spin current �t is defined as 1 /�t=Re�1 / l+�.20 The
transverse spin current in the ferromagnetic layer is ex-
pressed as

m 
 �Is
F 
 m� = −

�

�x

�S�F
↑↓

2e2 �F
T , �9�

where �F
↑↓= ��F

↑ / �1+���+�F
↓ / �1−���� /2.18,20

The total spin currents across the N3 /F1 and F1 /N4 inter-
faces, i.e., Is

�1�=Is
pump+Is

F1/N3 and Is
�2�=Is

pump+Is
F1/N4, exert the

torque �=m1
 ��Is
�1�+Is

�2��
m1� on the magnetization m1.
In order to obtain the spin current Is

�1,2�, we solve the diffu-
sion equations of spin accumulations in each layer. The
boundary conditions are as follows. We assume that the

m2

m1
I

Is
pumpIs

pump

Is
F1/N3 Is

F1/N4

Is
F2/N4 Is

F2/N5

Is
N5�N6

Is
N6�N7Is

N3/N2

N1(L1)

Is
N2/N1

N2(L2) N3(L3) N4(L4) N5(L5) N6(L6) N7(L7)F1(d1) F2(d2)

FIG. 1. The nonmagnetic �N�/ferromagnetic �F� multilayer, i.e.,
CPP-GMR spin valve, we consider is schematically shown. The
symbols are defined in the text.
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thickness of the N1 and N7 layer, L1 and L7, are sufficiently
thick enough compared to their spin-diffusion length, and
that the spin current is zero at the outer boundary of the N1
and N7 layers. We also assume that the spin current is con-
tinuous at all Fk /Ni and Ni /Nj interfaces and that the electric
current is constant through the entire structure. The spin cur-
rent Is

�1,2� is obtained as a function of the electric current I
and the pumped spin current Is

pump.
The torque � modifies the Landau-Lifshitz-Gilbert �LLG�

equation of the magnetization m1. The LLG equation con-
serves the magnitude of the magnetization, and thus the vec-
tors ṁ1 and m1
ṁ1 are perpendicular to the magnetization
m1. Since the torque � is perpendicular to m1, the torque can
be decomposed into the directions of ṁ1 and m1
ṁ1. The
LLG equation of m1 is expressed as20,23,32

dm1

dt
= − �m1 
 Beff +

�

MSd1
� + �0m1 


dm1

dt

= − �effm1 
 Beff +
�eff

�
��0 + ���m1 


dm1

dt
, �10�

where Beff is the effective magnetic field. ��=�c+�pump rep-
resents the enhancement of the Gilbert damping constant.
The enhancement �c is proportional to the electric current I
and independent of the pumped spin current Is

pump. The en-
hancement �pump represents the contribution from the
pumped spin current and is independent of the electric cur-
rent. It should be noted that the enhancement �pump differs
from the result of the conventional spin-pumping theory24

because �pump is a function of �t. The enhancement of the
gyromagnetic ratio �eff /� is also a function of the electric
current and the pumped spin current.

Let us move to the analysis of experimental results of Ref.
12. In general, the dynamics of the magnetization m1 deter-
mined by Eq. �10� is very complicated; thus, we cannot ob-
tain the analytical expression of the critical current of STT-
driven magnetization dynamics of the magnetization m1.
However, in the experiment of Ref. 12, the system, and
therefore the dynamics of m1, have axial symmetry along the
direction normal to the film plane because the high magnetic
field �about 7 T� is applied along this direction. Then we
assume that the magnetization of the F1 layer m1 precesses
around the magnetization of the F2 layer m2 with the relative
angle � and the angular frequency �. The critical current of
STT-driven magnetization dynamics is defined by the current
that satisfies the condition, �0+�c+�pump=0. The critical
current Ic is expressed as

Ic =
2eMSd1

���̃
��0 + �pump�� , �11�

where �̃ is the effective transverse spin-polarization coeffi-
cient that is determined by the diffusion equations of the spin
accumulations, and thus the coefficient �̃ is the function of
d1 /�sd�FL� and d1 / l�.

The parameters we used are as follows. The system con-
sists of nine layers shown in Fig. 1, where F1 and F2 are Co,
N1, N3, N4, N5, and N7 are Cu, and N2 and N6 are Pt. The

thicknesses of the N3, N4, and N5 layers are 10 nm, the thick-
nesses of the N2 and N6 layers are 3 nm, and the thickness of
the F2 layer is 12 nm.12 The thickness of the N1 and N7
layers are taken to be 10 �m, which is sufficiently longer
than the spin-diffusion length. The resistivity �2�N�−1 of Cu
and Pt are 14 and 42 � nm, respectively.33 The spin-
diffusion length �N of Cu and Pt are 1000 and 14 nm,
respectively.33 The conductance at the Cu/Pt interface
gCu/Pt /S is 35 nm−2.33 The magnetization M, the intrinsic
Gilbert damping constant �0, and the gyromagnetic ratio
� of Co are 0.14 T, 0.008, and 1.89
1011 Hz /T,
respectively.12,34 For simplicity, we assume that p=�=��
=0.46 for Co.33 The resistivity ��F

↑ +�F
↓�−1 and the longitudi-

nal spin-diffusion length �sd�FL� of the Co are 60 � nm and
40 nm, respectively.33 The transverse spin-diffusion length is
�sd�FT�=�sd�FL� /�1−�2.18 �J is taken to be 3.0 nm,19 i.e., �t

=4.2 nm. The conductances at the Co/Cu interface, g /S,
gr

↑↓ /S, and gi
↑↓ /S, are 50, 27, and 0.4 nm−2,

respectively.23–26,35 The angular frequency is �=��Bappl
+4	M�, where the strength of the applied magnetic field
Bappl is 7 T.12 The relative angle of the two magnetizations �
is assumed to be 0.99	.12 Although there are many material
parameters in our calculation, these values except tr,i

↑↓ are de-
termined by the experiments and ab initio calculations. The
value of tr,i

↑↓ /S is determined by fitting, and taken to be
6.0 nm−2. According to Ref. 12, the experimental values are
the low-temperature values.

The obtained critical current density is plotted by a solid
line against the thickness of the free layer d1 in Fig. 2. The
experimental results of Ref. 12 are shown by open circles.
One can see that our results agree well with the experimental
results. The critical current density decreases as the thickness
of the free layer decreases, and remains finite even in the
zero-thickness limit of the free layer. In order to see the main
mechanism that determines the remaining value of the criti-
cal current density, we decompose Ic of Eq. �11� into two
parts as Ic= Ic

0+ Ic
p, where Ic

0 is the component proportional to
�0 and Ic

p is the component proportional to �pump. In Fig. 2,
the components Ic

0 /S and Ic
p /S are plotted by dotted and dot-

dashed lines, respectively. As shown in Fig. 2 the remaining
value of the critical current in the limit of d1→0 is deter-
mined mainly by the spin pumping. Although Ic

0 /S is also

d1 [nm]

3.0

2.0

1.0

0

Ic/S

0 1.0
Ic/S
0 Ic/S

p

2.0 3.0 4.0 5.0

I c/
S
[A
/c
m
2 ]

4.0 x 108

FIG. 2. The critical current density vs the thickness of the free
�F1� layer. The circles are the experimental result of Chen et al.
�Ref. 12� for 70
140 nm2 junctions. The solid line corresponds to
Ic /S �see Eq. �11��. The dotted and dashed-dotted lines correspond
to Ic

0 /S and Ic
p /S, respectively. The dashed line corresponds to Ic /S

in the limit of �t→0.
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finite in the limit of d1→0 because of the finite penetration
depth of the transverse spin current �t in the F1 layer, the
remaining value is small compared to Ic

p /S. The dashed line
in Fig. 2 is the calculated critical current Ic /S in the limit of
�t→0. According to Fig. 2 we conclude that the effect of the
finite penetration depth �t is less important in describing the
results of Ref. 12.

The reason why both Ic
0 and Ic

p remain finite in the limit of
d1→0 is understood as follows. Slonczewski1 assumed that
the transverse spin current injected into the free layer is ab-
sorbed at the interface, and thus, STT is independent of the
thickness of the free layer. The critical current is determined
by the competition between STT and the magnetic �Gilbert�
damping of the free layer. The spin relaxation due to the
Gilbert damping is proportional to the thickness of the free
layer d1, and thus, the critical current given by Eq. �1� is
proportional to d1 and vanishes in the limit of d1→0. If the
penetration depth of the transverse spin current �t is finite,
the transverse spin current is not fully absorbed in the free
layer in the case of d1��t. Then the strength of STT is
decreased compared to the prediction of Slonczewski,1 and
thus, the critical current is increased. Spin pumping enhances
the Gilbert damping, and the spin relaxation due to spin
pumping is independent of the thickness of the free layer.
Thus, Ic

p remains finite in the limit of d1→0.
The dependences of the remaining value, about 1.6


108 A /cm2, on the parameters given above are as follows.
If the resistivity and the longitudinal spin-diffusion length of
Co are taken to be 210 � nm and 38 nm, respectively, which
are the room-temperature values,33 the remaining value is
estimated to be 1.5
108 A /cm2. The reduction of the lon-
gitudinal spin-diffusion length decreases the penetration
depth �t, and thus, the remaining value is reduced. The val-
ues of conductances, g and gr,i

↑↓, include the effect of the
Sharvin conductace.26 If g /S, gr

↑↓ /S, and gi
↑↓ /S are taken to

be 19.3, 14.6, and −1.1 nm−2, respectively, which are the
bare values estimated by ab initio calculation,26 the remain-
ing value is estimated to be 1.0
108 A /cm2. The reduction
in the mixing conductance decreases the effect of spin
pumping,23 and thus, the remaining value is reduced. If the
transmission mixing conductance tr,i

↑↓ /S is taken to be
3.0�12.0� nm−2, which is half �twice� compared to the value
used in Fig. 2, the remaining value is estimated to be
1.5�1.8�
108 A /cm2. The reduction �enhancement� of the
transmission mixing conductance decreases �increases� the
effect of the transverse spin accumulation, or equivalently
the penetration depth, on the spin current given by Eq. �4�,
and thus, the remaining value is reduced �enhanced�. We
conclude that although there are many material parameters in
our calculation the parameter dependence of the remaining
value is small, and our calculation gives the correct order of
the critical current.

The above results imply that we can increase or decrease
the critical current by controlling the spin pumping. Spin
pumping is the phenomenon by which the precessing mag-
netization of the free layer pumps spin current into the other
layers. The other layers act as an additional spin sink and the
magnetic damping of the free layer is enhanced by spin
pumping. The ability of the spin sink is determined by the
spin-diffusion length since the spin-diffusion length is in-

versely proportional to the square root of the spin scattering
rate. Materials with short �long� spin-diffusion length act as a
good �bad� spin sink. One may expect that, if the nonmag-
netic layer adjacent to the free layer is made of material with
a long spin-diffusion length, the Gilbert damping constant
and, therefore, the critical current is suppressed. In the limit
of infinite spin-diffusion length, �N→�, there is no spin-flip
scattering in the nonmagnetic layer and the spin pumping
into the nonmagnetic layer is forbidden. On the other hand, if
the nonmagnetic layer adjacent to the free layer is made of a
material with a short spin-diffusion length, the Gilbert damp-
ing constant and the critical current are enhanced. In the limit
of �N→0, the pumped spin current is absorbed at the inter-
face and enhancement of the critical current due to spin cur-
rent is maximized.

In order to verify the above statement, we analyzed the
critical current of the five-layer system, N1 /F1 /N4 /F2 /N7
�see Fig. 1�, where all parameters except the spin-diffusion
length of the N1 layer, �N1

, are the same as those used in the
analysis of Chen’s experiment. In Fig. 3, we plot the critical
current in the zero-thickness limit of the free layer as a func-
tion of the spin-diffusion length of the N1 layer �N1

. One can
see that the critical current is a decreasing function of �N1

.
The critical current remains finite in the limit of �N→� be-
cause of the spin pumping into the N4 layer and the finite
penetration depth of the transverse spin current. The result
shown in Fig. 3 shows that we can control the critical current
by varying the spin-diffusion length of the nonmagnetic elec-
trode adjacent to the free layer.

We cannot apply the present formula directly to a mag-
netic tunnel junction �MTJ� because spin accumulation is
not well defined in an insulator �I�. Although the spin
pumping across the insulating barrier is beyond the scope
of this paper, the spin pumping into the metallic elec-
trode should give the finite remaining value of the critical
current. Recently spin pumping in a MTJ was studied by
Moriyama et al.36 They studied a ferromagnetic resonance in
Al /AlO /Ni80Fe20 /Cu MTJ and found the generation of the
voltage on the order of a few microvolts, which is qualita-
tively explained by the theory of spin pumping in a metallic
structure37 but requires an unreasonably large value of mix-
ing conductance. The results of Moriyama et al.36 suggest
that a different nonequilibrium phenomenon exists in MTJ,
e.g., charge pumping or the development of the longitudinal
spin accumulation in a ferromagnetic layer.38

I c/
S
[A
/c
m
2 ]

0

1.0

2.0

3.0

4.0 x 108

λN1 [nm]
200 400 600 800 10000

FIG. 3. The dependence of the critical current in the zero-
thickness limit of the free layer in the N1 /F1 /N4 /F2 /N7 five-layer
system on the spin-diffusion length of the N1 layer, �N1

.
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In conclusion, we studied the critical current of spin-
transfer-torque-driven magnetization dynamics by taking
into account both the finite penetration depth of the trans-
verse spin current in the ferromagnetic layer and spin pump-
ing. We extend the spin-pumping theory with the finite pen-
etration depth to include the electric current and successfully
reproduced the experimental results of Ref. 12. We showed
that the critical current remains finite in the zero-thickness

limit of the free layer and the remaining value is determined
mainly by spin pumping. We also showed that we can control
the remaining value of the critical current by varying the
spin-diffusion length of the nonmagnetic electrode adjacent
to the free layer.
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